
Theoret. Claim. Acta (Berl.) 37, 147--158 (1975) 
�9 by Springer-u 1975 

AppIication of Semi-Empirical Molecular Orbital Methods 
to the Calculation of Properties of Ionic Crystals 

Michae l  R. Hayns*  and  L e n a r d  Di s sado  

Research School of Chemistry, Australian National University, Canberra, A.C.T. Australia 

Received June 7, 1974/November 28, 1974 

Investigations are continued into the usefulness of semi-empirical molecular orbital techniques 
to the calculation of the electronic properties of ionic crystals. The cluster model is used, on which the 
molecular orbital calculations are made, with the remaining material approximated by the inclusion of a 
Madelung potential derived from those atoms not in the cluster. 

Applications have been made to the bulk properties of LiF and MgO, with very good results. 
Surface properties of MgO have been investigated using a surface Madelung potential to represent the 
remaining crystal; the results in this case show a closure in the band gap on approaching the surface, 
which is consistent with experimental observations. 

The long term aim of the work is to provide a simple, computationally viable method for the in- 
vestigation of complex defects in ionic crystals. To this end we have performed a calculation on the U 
centre in LiF, Consistently good results have been obtained for all these properties showing that this 
is a viable method for these systems and that complex defects may be approached with some optimism 
that the method provides a useful tool. 
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1. Introduction 

Semi-empi r ica l  molecu la r  o rb i ta l  me thods  have been deve loped  for the 
s tudy of  large molecules  where  the use of  ab-initio techniques,  even in the one 
e lec t ron a p p r o x i m a t i o n ,  is p rec luded  on c o m p u t a t i o n a l  cost  grounds.  Conse-  
quent ly  me thods  have been devised which  c i rcumvent  the direct  ca lcu la t ion  of 
two e lec t ron  integrals  by  empir ica l  pa rame te r s  and  numer ica l  approx ima t ions .  
Obvious ly ,  such a p rocedure  requires  great  care so tha t  essential  phys ica l  
effects a re  not  ignored:  

There  are m a n y  var iants  of  the semi-empir ica l  methods ,  but  the mos t  widely 
used are  Extended  Hi icke l  T h e o r y  (E.H.T.) [1] and  Comple t e  Neglec t  of  
Differential  Over l ap  ( C N D O )  [2]. The  essential  difference between them is 
tha t  the C N D O  calcula t ions  are t aken  to self consistency.  The  use of  these 
me thods  in q u a n t u m  chemis t ry  is widespread  and their  behav iou r  is well  
documen ted  [3].  

Several  a t t empt s  have been m a d e  to app ly  such techniques to p rob l ems  
concern ing  solids. In par t icu lar ,  Messmer  and Wa tk in s  [4]  have used E.H.T. 
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extensively for calculations on covalent systems, notably diamond and its deep 
defect level and carbon interstitial [5]. These authors used a cluster approach, 
increasing the number of atoms treated to investigate convergence of cluster 
size. The results of this work were very encouraging, although the reservations 
pointed out by Larkins [6] must be taken into account. Later work [7] has in- 
cluded periodic boundary conditions, again with useful results. CNDO has been 
applied to several different problems concerning solids; Bennett et al. [7] have 
considered chemisorption on graphite surfaces and Baetzold [8] has looked at 
aggregates of transition metals. All of this work has shown semi-empirical 
molecular orbital methods to be a useful tool for bulk problems. 

With the cluster model in mind, we have attempted to use a semi-empirical 
approach to the bulk and surface properties of ionic crystals. Since large charge 
shifts must be accounted for in this case, we have used the CNDO method 
and adapted it as necessary for application to ionic crystals. The model lends 
itself best to the study of defects in a crystal since, in many cases a good re- 
presentation of their electronic properties may be obtained by considering 
relatively few of the neighbouring atoms. Consequently, in the development and 
adaptation of the method we have concentrated on providing a model of ionic 
crystals which can subsequently be used for defect centres. It is simple to use, 
economical in computing demands and has uncomplicated chemical and physical 
interpretations. 

The method has not been developed for calculations of band properties; we 
have no periodic boundary conditions and hence obtain no wave-vector 
dependent quantities. It is, therefore, not intended for use on metallic or 
covalently bonded systems, although in the latter case, the technique of saturating 
floating bonds can provide a useful model. Since the method is based on the one 
electron approximation no second order quantities, e.g. dispersion or polariz- 
ability, can be accounted for. 

The method is useful for band energies, obtained from the molecular orbital 
eigenvalue spectrum and the energies of localized defect levels. Only relative 
quantities will be emphasised since absolute values of the binding energy are 
known to be not well reproduced [7]. 

The present work continues an investigation into the applicability of the 
method for calculations on bulk systems from an early preliminary study on LiF 
[9] and LiF : H- [10]. Results for the band gap and widths have been obtained 
for LiF and MgO with the effects of the bulk of the crystal outside the cluster 
represented by a classical Madelung potential. A study has also been made of the 
surface of MgO, for which some experimental results are available. These calcula- 
tions allow us to draw conclusions on the usefulness of this method and on the 
behaviour of the CNDO/2 parameterization when used for bulk calcula- 
tions. 

The simplest defect centre, that of the substitutional hydrogen atom in LiF 
(the U centre), has also been investigated. Results are obtained which indicate 
that a range of crystal properties may be consistently described and that viable 
calculations on complex defect centres may be undertaken. 

The results obtained for the band properties, e.g. band gap and F 2p valence 
band width are not markedly affected by the inclusion of the Madelung term 
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since these quantities rely upon differences between one electron energy levels. 
The inclusion of these terms is more important when considering the properties 
of electron excess and electron deficient defect centres. This is indicated here by 
calculations on the U centre in LiF and will be followed later by applications 
to the F centre. 

2. Method 

The CNDO method has been described in detail by Pople and Beveridge 
[-3] and here we shall list only the approximations, parameters and adaptations 
needed to perform calculations on solids. 

The basic CNDO method requires detailed information of the following 
quantities: ionization energies and electron affinities of the constituent atoms, 
parameterization of the resonance integrals, orbital exponents, and, of course, 
the particular geometry. For  calculations on bulk, perfect systems we have re- 
tained the CNDO/2  parameterization completely. Further, only one lattice 
parameter has been considered. 

2.1. Residual Madelun 9 Potential 

All our CNDO calculations implicitly include terms equivalent to the 
electrostatic interaction of an electron belonging to a cluster ion (i), with all the 
other ions in the cluster. Since our model is to describe an ionic crystal, whose 
basic nature is that of a lattice of point ions, we include a term equal to the 
electrostatic interaction of an electron at lattice site i, with the remainder of the 
crystal outside the cluster. This region of crystal is considered to be made up of 
point ions. 

The additional term involves the use of an extra parameter, q, the charge 
assigned to the point ion lattice and is obtained by the following method. 

The electrostatic energy of an electron at a particular lattice site i within the 
cluster, is written 

E(ri) = - ~ q~ ~ qc 
s~c,i Irs- ril c~i Ire- ril (1) 

where s runs over all point charge lattice points outside the cluster and c over 
the cluster only. The charge on ions outside the cluster is Iqsl and on ions within 
the cluster Iqcl. The second term on the right hand side of Eq. (1) is that implicitly 
included in the calculation, the first is the extra term. We define the residual 

i Madelung constant ~R 
i ~ a sgn(qs) 

0{ R 
s~c,i Irs- ril (2) 

in a similar way to the classical Madelung constant 

~ asgn(qs) 

-- sr I t , "  ril (3) 

s here running over all lattice sites except i. 
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The residual Madelung constant can thus be obtained from e using 

i L a sgn(q~) e R  = ~ - ( 4 )  
c*i Irc-r,I  

and is a measure of the potential of an electron at site i due to the bulk, 
after removing from the Madelung sums those terms which appear explicitly 

i is introduced into the calculation by in the molecular orbital calculation, ct R 
adding this term to the diagonal elements of the Fock matrix, so that in 
Pople's nomenclature these become; 

F.u = - �89 + Au) + [(PAA -- ZA) -- l(p~# _ 1)] 7AA 
(5) 

+ ~ (PBB - ZB) 7AB -- ~ Iqsl/a. 
B~A 

It should be noted that the added term is equal to expanding the sum over 
atoms B in (5) to include all atoms outside the cluster, assuming the approxima- 
tion that for these atoms 7Aa is equal to the inverse of the interatomic separation 
of A from B. The factor - (PBB --  Z a )  is just the net ionic charge. 

At this stage we have not attempted to adjust the off diagonal terms Fu~ 
since these represent the change in electronic energy caused by the effects of the 
overlap charge distribution and the representation of the residual Madelung 
potential requires information on its variation away from a lattice site. ,An 
examination of F,v shows that these terms derive from 3-molecule interactions 
in the same approximation of TAB as above, since these interactions are neglected 
throughout C NDO we neglect them here. However this simple method for the 
Madelung potential should be seen as a first approximation and further detailed 
work is required to take into account higher order effects. A further difficulty 
lies in the choice of the charge on the lattice (Iqs]). This can be made in several ways. 
The first and most obvious is to put [q~]--1 which then agrees with the value 
used in classical theory for the alkali halides, and is known to give a good re- 
presentation of the cohesive energy. In the case of MgO values of 1.5 or 2 could 
be rationalized on similar grounds. However, a much lower charge is found from 
a Mulliken population analysis of the valence charges obtained from the CN D O  
calculations. There are difficulties in interpreting these populations as charges on 
ions since exchange is only included approximately in the method and only 
valence electrons are explicitly calculated. However if the extra term is to be 
regarded as an extension of the interionic interactions sum in F~, u to include ions 
outside the cluster, the value of ]qs] should be the same as the mean ionic charge 
within the cluster, otherwise the cluster cannot be thought of as a representative 
crystal segment. A second scheme is to vary the magnitudes Jq~l of the charges 
outside the cluster until the same value is found for the charges on the ions in the 
cluster derived from the Mulliken populations. This has been done and the results 
are presented for a range of q values. 

for each site in In order to perform calculations it is necessary to evaluate eR 
the array of atoms. This is a one-off task for each crystal geometry and cluster 
size. Obviously for NaC1 structure the symmetry reduces the number of unique 
positions. Figure l shows these positions for a cluster containing 27 atoms. Table 1 
gives the values of ~ for this arrangement and also for the 5 x 5 planar system 
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Fig. t. 27 atom cluster. Sites are labelled for the residual Madelung constants c~ which appear 
in Table 1 

Table 1. Values of reduced Madelung potential for bulk and surface systems. 
Atomic positions refer to those shown in Fig. 1 for bulk and Fig. 3 for surface systems 

Atomic position c~ Bulk material c~ Surface 
(c~ M = 1.74756) (~ = 1.6810") 

1 -0.3860 0.3459 
2 -0.4392 0.3505 
3 -0.2353 0.4701 
4 -0.6836 0.7329 
5 - -  0.1413 
6 - -  0.2224 

" see Re[ [20]. 

used for the surface of MgO,  in this case with the appropr ia te  surface Made lung  
constant .  

2.2. Computin9 Requirements 

Fur ther  modif icat ions to the original C N D O  program include the facility of 
increasing or decreasing the size of the basis and  for performing calculations 
with a m a x i m u m  of 50 a toms or 200 basis functions. C ompu t i ng  requirements  
for the largest p rogram on an IBM 370/175 are approximate ly  1 M byte of core and 
3 minutes  per i terat ion in the SCF cycle. Calculat ions  on  LiF  for the 27 a tom 
cube (108 basis functions), require approximate ly  3 minutes  to achieve self con- 
sistency (approximately 15 iterations,  with an accuracy of 10 -7 a.u.). The core 
requirements  for this version of the p rogram are < 500 kbytes. 
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3. Results and Discussion 

3.1. Bulk and Surface Calculations with No Residual Madelung Potential 

As a preliminary to the calculation of defect properties we have investigated 
the bulk properties of LiF and MgO and the surface of MgO to ascertain the 
behaviour of the method for widely differing ionic crystals. LiF consists of only 
first row elements and has a classical charge transfer of 1, whilst MgO involves 
a second row element,, magnesium and is associated with a charge transfer of 2. 
Further, the use of a second row atom allows an investigation of the effects of 
d-orbitals and their parameterization. 

For  LiF preliminary calculations with various cluster sizes have already been 
reported [-9]. This work showed that the eigenvalue spectrum of the clusters was of 
the correct nature for an ionic crystal, i.e. that of a narrow band insulating solid. 
The results were obtained using a 27 atom cluster for both LiF and MgO. In each 
case the interionic separation was maintained at the experimental values of 
2.01 ~ and 2.10/~ respectively. 

Since the calculations on a 27 atom cluster necessarily involve an extra atom 
(of either species) we add or subtract charge to render the whole system closed 
shell for computational convenience. We have performed calculations with open 
shell systems for both LiF and MgO, with essentially identical results. In both 
cases there is a non-degenerate level close to the bottom of the conduction band. 
In the earlier work this level was assumed to be part of the conduction band. 
An examination of its eigenvector shows that it is of s-type (A1) symmetry with its 
electron density distributed mainly over the 6 nearest neighbours arranged octa- 
hedrally about the central ion. This is, in fact, the model adopted by Overhauser 
[11] for the exciton in MgO, which is intermediate in character between Frenkel 
and Wannier excitons. Exciton absorption in MgO is known to lie at the con- 
duction bands edge with an energy of 7.76 eV [12]. However, the experimental 
energy corresponds to a delocalized exciton, whereas our model forces localiza- 
tion within the cluster. We would suggest, therefore, that our calculated values 
should correspond to those for a trapped exciton. Absorption levels in a 
distorted MgO crystal have been studied [13] and interpreted [14] as being those 
of an exciton trapped at an F centre. Since the F centre is a powerful trapping 
site, and it is not obvious that the localization due to the cluster approximation 
is as strong, the observed level might be expected to lie below the value obtained 
here. This is so, with the observed level lying at 5.73 eV and our calculated 
5.85 eV above the valence band. Allowing the interpretation of this level as a 
localized exciton, the band gap in MgO is found to be 7.34 eV which agrees 
reasonably well with the experimental value of 7.77 eV [12]. 

For  LiF a band gap of 12.25 eV was obtained with the non-degenerate lying 
at 10.5 eV, 1.75 eV below the conduction band. The experimental band gap is 
13.6eV [15]. No experimental results exist for the trapped exciton in LiF, 
although Bassini and Inchauspe [16] estimate that for alkali halides these states 
lie approximately 0.6 eV below the free exciton energy. For  LiF this places the 
level some 1.6 eV below the conduction band, which then agrees with our inter- 
pretation of this level. 

Since there are experimental results available for the surface states of MgO 
[17, 18-1 we have performed calculations for this system in order to extend our 
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Fig. 2. 5 x 5 planar arrangement used for surface calculations sites are labelled for the residual 
Madelung constants which appear in Table 1 

investigation of the range of applicability of the method. Surface states of 
crystals may be considered to have exponential damping along an axis normal to 
the surface plane, thus localizing them in the region of the surface [19]. A 
one-dimensional treatment of ionic crystals shows that two surface levels appear 
in the band gap [20]. For a 3-dimensional system these levels would broaden 
to form surface bands, the number of surface ion-pairs determine the number of 
levels in these bands. Here we studied three systems, one layer, two layers and 
three layers (corresponding to the bulk). 

Preliminary work varying the number of atoms in the planar cluster from 
9 to 25, showed that the planar band gap decreased with increasing number of 
atoms and was close to a limiting value for 25 atoms. The two layer band gap 
was identical in the two cases considered and gave confidence in its interpretation 
as a two layer result. The calculated band gap using the 5 x 5 planar cluster 
show in Fig. 2 was 5.63 eV, for the two layer case both twenty four and eighteen 
atom clusters gave 6.9 eV and the bulk twenty seven atom arrangement 7.34 eV. 
The model calculations show a decrease in band gap with crystal thickness, a 
result which is confirmed qualitatively by the experimental measurements. 
Evidence for a surface band gap at approximately 5 eV has been found by 
Nelson et al. 1-17] when investigating chemisorption on MgO surfaces. The 
diffuse reflectance of MgO powers has been measured [17, 18] showing an ab- 
sorption due to the surface band gap peaking at approximately 5.7 eV with 
an onset in the region of 5.0 eV. 

It should be noted that edge effects for the cubic case and the one layer 
plane are quite different since, of the 26 atoms on the cube faces, only six 
lie in positions equivalent to surface atoms, even then with their nearest neigh- 
bours in positions of symmetry far removed from those of the surface. The im- 
portance of edge effects has already been stressed [9], but it should be re- 
emphasised that we are only concerned with relative quantities and that edge 
effects in these areas will cancel as long as the two systems have similar 
geometries. 

No non-degenerate level was found for the surface calculations using the planar 
system. This follows from our arguments concerning the localization of level in 
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the cubic calculation. In that case there was but one unique site for the level, 
whilst for the plane there are six and these are shown in Fig. 2. Consequently, if 
there is an exciton level, it will be delocalized, and should lie in the heavily bunched 
states at the bottom of the conduction band. A further test of this contension is 
given by a calculation on a 4 x 3 x 3 cluster of MgO. This gives much more 
structure and a band gap which is very difficult to discern, the reason being that 
the exciton can be trapped not only on the octahedrally co-ordinated site, but also 
on the four equivalent positions having five neighbours. Detailed results are not 
available since a full valence orbital calculation on this system is beyond the 
capabilities of the current version of the program. The results obtained were for a 
restricted s-p basis on the magnesium atoms. 

3.2. Results with the Residual Madelung Term 

The variation of the band gap with charge assigned to the lattice outside the 
cluster is shown in Fig. 3 for MgO. A value of q of 0.375 gives the experimental 
band gap. However, it is more in keeping with the spirit of the calculation to 
choose a value equal to the mean charge on the atoms in the cluster. This is 
obtained from the charge densities by  removing the core charges and the net 
charge on the system, then averaging the ionic charges. The result is similar to 
an iterative treatment of the charges leading to a self-consistent value for q, as 
carried out by Deutsche [21] for linear chains. The value obtained in this way 
for q is 0.45, which leads to a band gap of 7.57 eV. The results are summarized 
in Table 2. The trapped exciton level is at 6.46 eV. This increase from the previous 
value of 5.85 eV is due to the Madelung potential allowing the exciton to interact 
with the remaining crystal and to give some delocalization. Naturally, complete 
delocalization is not possible, and the energy of the free exciton, 7.76 eV is not 
obtained. The width of the conduction band has also been found. It varies slowly 
with q and at q=0.45  has the value 13.77 eV. The experimental value lies be- 
tween 13 and 17 eV [-22]. 

The results for LiF, shown in Fig. 4, exhibit similar features to those for 
MgO. A balanced charge was obtained in the same way as for MgO and is 0.23. 
The band gap and exciton energies are 12.51 eV and 10.83 eV respectively. At 
q = 1, the value which would be chosen from considerations of the point-ion 
calculations, the band gap and exciton energies are 13.4 eV and 11.4 eV. The ex- 
perimental value for the band gap is 13.6 eV and for the trapped exciton, using 
the arguments of Bassini and Inchauspe [ 16], 12.0 eV. Previous band gap calcula- 
tions have given results of 15.0 eV from the tight binding calculations of Lafon 
et al. [-23] and 12.8 eV from the mixed basis calculations of Kunz et al. [24]. 

For  LiF the band gap and exciton energy vary approximately linearly with q, 
in contrast to MgO, where there is maxima in both curves. This change in shape 
may be attributed to the unoccupied Mg d-orbitals acting as an electron sink at 
high q values. We have performed calculations wi th  these orbitals arbitrarily 
excluded and this then gives a curve similar to that for LiF. For  small q values 
the inclusion o f  d-orbitals has no significant effect and, if a q of 0.45 is used 
considerable savings may be had by discarding the d-orbital part of the valence 
basis. A similar effect has been found with preliminary calculations on NaF. 
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Fig. 3. Variation of band gap and trapped exciton level with q for MgO a = band gap, b = trapped 
exciton level (eV above valence band edge), c = experimental band gap 
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Fig. 4. Variation of band gap and trapped exciton level with q for LiF a = band gap, b = trapped 
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Table 2. Summary  of results for MgO. Effective ionic charges are quoted as fractions of an electron. 
Band gaps, exciton energies and conduction band (C.B.) widths in electron volts 

q Bulk crystal Crystal surface 

Effective Band gap C.B. Exciton level Effective Band gap 
ionic charge (eV) width (eV) (eV) ionic charge (eV) 

0.00 0.36 7.34 13.41 5.85 0.28 5,63 
0.30 0,42 7.91 13.72 6.7 0.34 5,60 
0.35 0.43 7.83 t3.76 6,63 0.35 5.63 
0.45 0.45 7.57 13,85 6.46 0.37 5,70 
0.9 0.52 6.57 14.22 5.78 0.45 6.35 
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Fig. 5. Variation of band gap with q for the MgO surface a = band gap, b = experimental band gap 

Table 3. Summary of results for bulk LiF. Effective ionic charges are given as fractions of an electron 

q Effective Band gap Valence band Exciton level 
ionic charge (eV) width (eV) (eV) 

0.00 0.22 12,23 2.5 20.54 
O. l 5 0.225 12.43 2.47 10,73 
0.23 0.23 12.52 2.4. 7 10,83 
0.25 0,231 12.53 2.4 6 10.84 
0.30 0.236 12.6 2.45 10.9 

The width of the valence band in LiF has been obtained. At q = 0.23 it is 
2.4 eV which is in good agreement with the value of 2.3 eV found by Kunz et al. 

[24]. There is a group of four levels split away some 1.2 eV from the bottom of 
the valence band. If the valence band width is measured to the bottom of these 
levels the value obtained is 3.9 eV, which agrees with the value of 3.9 eV obtained 
by Ewing and Satz [25]. It would seem that which value is taken depends upon 
whether these levels are included or not. However, the gap between them and the 
rest of the valence band is large enough to indicate that they should be ex- 
cluded. A summary of the results for LiF is given in Table 3. 

Surface calculations were again performed for MgO and the variation of the 
band gap with q is shown in Fig. 5. A shallow dip occurs in the region q: 
- 0  -0.45,  the curve thereafter rising sharply. The mean ionic charges for the 
surface are slightly lower than for the bulk ions. The residual Madelung potential 
is however contributed to mostly by the bulk ions, thus we have taken the bulk 
value of 0.45 as the balanced charge. At this value of q the mean surface charge is 
0.37 and the band gap 5.7 eV. Thus, the prediction of the model of a lowering 
of the band gap for the surface is maintained and is in reasonable agreement 
with the experimental values. The results for the surface of MgO are included with 
those for the bulk in Table 2. 
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3.3. The U Centre in LiF 

Probably the simplest defect in the alkali-halides is the U centre. This consists 
of a halide replaced by a hydrogen ion (H- for F- in LiF). Calculations for this 
defect are straightforward, requiring no modifications to the method. Experimental 
results for LiF have only very recently become available (Private Communication 
Dr. J. Beaumont), an excitation energy of approximately 9.75 eV having been 
found. This may be compared with the value of 9.45 eV given by Ivey's law 
[26] and the point calculations of Spector et al. [27] which gave 8.11 eV. 
Calculations without the Madelung correction terms gave 9.15 eV, whilst for 
q = 0.23 we obtained 9.35 eV and at q = l, 9.50 eV. Thus indicating, along with the 
results for the band gap, that for q = 1, good agreement with experiment is 
obtained. 

4. Conclusions 

In this work we have demonstrated that the semi-empirical macro-molecular 
orbital technique provides a convenient tool for studying a wide range of the 
electronic properties of ionic crystals. Band widths and gap have been calculated 
for LiF and MgO and give consistently good results. The surface of MgO has 
been studied and the results indicate that the method is capable of giving 
reasonable, consistent results in this case too. The inclusion of a Madelung 
potential has proved successful for both LiF and MgO and for the U centre in 
LiF. 

Since it is the intention to use this method specifically for the calculation of 
the electronic properties of complex defects in ionic crystals (the F centre and F 
aggregate centres, for example), this work should be viewed as an initial step only. 
However, in order to proceed with more complex defects one must demonstrate 
that the simplest systems are well represented. This we have done with this 
work. 

There are several aspects of this study which call for further investigation and 
the method itself could be improved in various ways. For example our inter- 
pretation of the non-degenerate level in the band gap for bulk calculations on both 
LiF and MgO requires further clarification, and the whole field of crystal 
surfaces demands a much more intensive study than was undertaken here. 

The computing methods could be improved in the matrix handling routines 
and by the specific inclusion of the symmetry properties of the lattice; very much 
larger clusters could be accommodated in this way with little increase in com- 
puting demands. However, such modifications are time-consuming and we felt 
that some information as to the applicability of the method to the systems was 
desirable before making such an investment. 

The techniques used in this work must suffer from the same restrictions 
as found previously in applications to molecules. In particular the calculated total 
energies are in error due to the use of empirical parameters to represent the core 
orbital energies. Consequently we have not investigated the total energies of the 
systems, nor have we considered the changes in these quantities brought about by 
the inclusion of the Madelung terms. As we have pointed out, these are pre- 
liminary results, reported here to allow an assessment of the possible usefulness 
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of  the  C N D O  m e t h o d  a n d  to ind ica t e  s o m e  of  the  difficulties. F u r t h e r  w o r k  is n o w  
be ing  u n d e r t a k e n  to cons ide r  a r e p a r a m e t e r i z a t i o n  of  the C N D O  scheme for use  
in  ca l cu l a t i ons  o n  solids.  W h e n  suff icient  exper ience  has  b e e n  ga the red  we shal l  
t hen  be ab le  to c o n s i d e r  the  usefu lness  of the  m e t h o d  for p red ic t ing  a wider  
r ange  of  obse rvab l e  p a r ame t e r s .  
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